A role for hip position in initiating the swing-to-stance transition in walking cats.
نویسندگان
چکیده
In this investigation, we obtained data that support the hypothesis that afferent signals associated with hip flexion play a role in initiating the swing-to-stance transition of the hind legs in walking cats. Direct evidence came from observations in walking decerebrate cats. Assisting the flexion of the hip joint during swing advanced the onset of activity in ankle extensor muscles, and this advance was strongly correlated with a reduction in the duration of hip flexor muscle activity. The hip angle at the time of onset of the flexion to extension transition was similar during assisted and unassisted steps. Additional evidence for the hypothesis that sensory signals related to hip flexion are important in regulating the swing-to-stance transition came from four normal animals trained to walk in a variety of situations designed to alter the coordination of movements at the hip, knee, and ankle joints during the swing phase. Although there were exceptions in some tasks and preparations, the angle of the hip joint at the time of onset of extensor activity was generally less variable than that of the knee and ankle joints. We also found no clear relationships between the angle of the limb and body axes, or the length of the limb axis, and the time of onset of extensor activity. Finally, there were no indications that the stretching of ankle extensor muscles during swing was a factor in regulating the transition from swing-to-stance.
منابع مشابه
Computer simulation of stepping in the hind legs of the cat: an examination of mechanisms regulating the stance-to-swing transition.
Physiological studies in walking cats have indicated that two sensory signals are involved in terminating stance in the hind legs: one related to unloading of the leg and the other to hip extension. To study the relative importance of these two signals, we developed a three-dimensional computer simulation of the cat hind legs in which the timing of the swing-to-stance transition was controlled ...
متن کاملControl of frontal plane motion of the hindlimbs in the unrestrained walking cat.
This study describes the patterns of activity of hip abductor and adductor muscles and relates their activity to the frontal plane motions of the hindlimbs during unrestrained walking in the cat to provide insight into the function of these muscles in maintaining stability during walking. Electromyographic activity was recorded from hindlimb muscles while cats walked across a walkway. Four vide...
متن کاملاثر قطع عضو همیپلویکتومی بر کینماتیک و نیروی تولیدی عضلات اندام تحتانی حین راه رفتن با پروتز کانادین؛ گزارش موردی
Objective Hemipelvectomy amputation is a surgical procedure in which the lower limb and a portion of pelvic are removed. There are a few studies on the performance of this group of patients while walking. The aim of this paper was to evaluate the effect of hemipelvectomy amputation on kinematics and muscle force generation of the lower limb while walking with Canadian prosthesis. Materials & M...
متن کاملAdaptive control for backward quadrupedal walking V. Mutable activation of bifunctional thigh muscles.
1. In this, the fifth article in a series to assess changes in posture, hindlimb dynamics, and muscle synergies associated with backward (BWD) quadrupedal walking, we compared the recruitment of three biarticular muscles of the cat's anterior thigh (anterior sartorius, SAa; medial sartorius, SAm; rectus femoris, RF) for forward (FWD) and BWD treadmill walking. Electromyography (EMG) records fro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 94 5 شماره
صفحات -
تاریخ انتشار 2005